Generalized bent functions from spreads and their spectra

Wilfried Meidl, Alexander Pott

RICAM, Linz; Otto von Guericke University Magdeburg

July 4, 2017

Bent functions

Definition

Let A, B be (abelian) groups, f a function from A to B. Then f is called a bent function if

$$
\left|\sum_{x \in A} \chi(x, f(x))\right|=\sqrt{|A|}
$$

for every character χ of $A \times B$ which is nontrivial on B.
$R=\{(x, f(x)): x \in A\}$ is a $(|A|,|B|,|A|,|A| /|B|)$ relative difference set in $A \times B$, relative to B.

Bent functions

Definition

Let A, B be (abelian) groups, f a function from A to B. Then f is called a bent function if

$$
\left|\sum_{x \in A} \chi(x, f(x))\right|=\sqrt{|A|}
$$

for every character χ of $A \times B$ which is nontrivial on B.
$R=\{(x, f(x)): x \in A\}$ is a $(|A|,|B|,|A|,|A| /|B|)$ relative difference set in $A \times B$, relative to B.

Examples:

Boolean bent function, p-ary bent function, $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$.

$$
\left|\mathcal{W}_{f}(u)\right|=\left|\sum_{x \in \mathbb{F}_{p}^{n}} \epsilon_{p}^{f(x)-u \cdot x}\right|=p^{n / 2}
$$

for all $u \in \mathbb{F}_{p}^{n} .\left(\epsilon_{p}=e^{2 \pi i / p}, \epsilon_{2}=-1\right)$

Bent functions

Vectorial bent function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{m}$.

$$
\left|\mathcal{W}_{f}(a, b)\right|=\left|\sum_{x \in \mathbb{F}_{p}^{n}} \epsilon_{p}^{a \cdot f(x)-b \cdot x}\right|=p^{n / 2}
$$

for all nonzero $a \in \mathbb{F}_{p}^{m}$ and $b \in \mathbb{F}_{p}^{n}$. The component functions $\{a \cdot f(x): a \neq 0\}$ form a linear space of p-ary (Boolean) bent functions of dimension m.

Bent functions

Vectorial bent function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{m}$.

$$
\left|\mathcal{W}_{f}(a, b)\right|=\left|\sum_{x \in \mathbb{F}_{p}^{n}} \epsilon_{p}^{a \cdot f(x)-b \cdot x}\right|=p^{n / 2}
$$

for all nonzero $a \in \mathbb{F}_{p}^{m}$ and $b \in \mathbb{F}_{p}^{n}$. The component functions $\{a \cdot f(x): a \neq 0\}$ form a linear space of p-ary (Boolean) bent functions of dimension m.

$$
\begin{aligned}
f: \mathbb{F}_{2}^{n} \rightarrow & \mathbb{Z}_{2^{k}} \quad\left(f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{Z}_{p^{k}}\right) \\
& \mathcal{H}_{f}^{k}(\alpha, u)=\sum_{x \in \mathbb{F}_{2}^{n}} \zeta_{2^{k}}^{\alpha \cdot f(x)}(-1)^{u \cdot x}, \quad \zeta_{2^{k}}=e^{2 \pi i / 2^{k}},
\end{aligned}
$$

has absolute value $2^{n / 2}$ for all $u \in \mathbb{F}_{2}^{n}$ and all nonzero $\alpha \in \mathbb{Z}_{2^{k}}$.

Generalized Bent Functions

Definition

K.U. Schmidt (2009) A function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ is called a generalized bent function (gbent function) if

$$
\mathcal{H}_{f}^{k}(u)=\sum_{x \in \mathbb{F}_{2}^{n}} \zeta_{2^{k}}^{f(x)}(-1)^{u \cdot x}
$$

has absolute value $2^{n / 2}$ for all $u \in \mathbb{F}_{2}^{n}$.

Generalized Bent Functions

Definition

K.U. Schmidt (2009) A function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ is called a generalized bent function (gbent function) if

$$
\mathcal{H}_{f}^{k}(u)=\sum_{x \in \mathbb{F}_{2}^{n}} \zeta_{2^{k}}^{f(x)}(-1)^{u \cdot x}
$$

has absolute value $2^{n / 2}$ for all $u \in \mathbb{F}_{2}^{n}$.
Note: $\left|\sum_{x \in \mathbb{F}_{2}^{n}} \chi(x, f(x))\right|=2^{n / 2}$ is required only for the characters of order 2^{k-1}. In general NOT a relative difference set (bent function).

Generalized Bent Functions

Definition

K.U. Schmidt (2009) A function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ is called a generalized bent function (gbent function) if

$$
\mathcal{H}_{f}^{k}(u)=\sum_{x \in \mathbb{F}_{2}^{n}} \zeta_{2^{k}}^{f(x)}(-1)^{u \cdot x}
$$

has absolute value $2^{n / 2}$ for all $u \in \mathbb{F}_{2}^{n}$.
Note: $\left|\sum_{x \in \mathbb{F}_{2}^{n}} \chi(x, f(x))\right|=2^{n / 2}$ is required only for the characters of order 2^{k-1}. In general NOT a relative difference set (bent function).

Questions:

- Does this definition give anything interesting?

Not accepted: Cheating function: $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}, f(x)=2^{k-1} a(x)$, where $a: \mathbb{V}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is bent.

Generalized Bent Functions, n even

Generalized Bent Functions, n even

Theorem (Hodzic, M.,Pasalic)
Let n be even. A gbent function

$$
f(x)=a_{0}(x)+2 a_{1}(x)+\cdots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)
$$

from \mathbb{F}_{2}^{n} to $\mathbb{Z}_{2^{k}}$ is a $(k-1)$-dimensional affine space

$$
\mathcal{A}=a_{k-1} \oplus\left\langle a_{0}, \ldots, a_{k-2}\right\rangle
$$

of bent functions such that for $h_{0}, h_{1}, h_{2}, h_{3} \in \mathcal{A}$ with $h_{0} \oplus h_{1} \oplus h_{2} \oplus h_{3}=0$ we have $h_{0}^{*} \oplus h_{1}^{*} \oplus h_{2}^{*} \oplus h_{3}^{*}=0$.
(Recall, $g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ bent $\Rightarrow \mathcal{W}_{f}(b)=2^{n / 2}(-1)^{g^{*}(b)}$.
The "dual" g^{*} is also bent.)

Generalized Bent Functions, n even

Theorem (Hodzic, M.,Pasalic)
Let n be even. A gbent function

$$
f(x)=a_{0}(x)+2 a_{1}(x)+\cdots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)
$$

from \mathbb{F}_{2}^{n} to $\mathbb{Z}_{2^{k}}$ is a $(k-1)$-dimensional affine space

$$
\mathcal{A}=a_{k-1} \oplus\left\langle a_{0}, \ldots, a_{k-2}\right\rangle
$$

of bent functions such that for $h_{0}, h_{1}, h_{2}, h_{3} \in \mathcal{A}$ with $h_{0} \oplus h_{1} \oplus h_{2} \oplus h_{3}=0$ we have $h_{0}^{*} \oplus h_{1}^{*} \oplus h_{2}^{*} \oplus h_{3}^{*}=0$.
(Recall, $g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ bent $\Rightarrow \mathcal{W}_{f}(b)=2^{n / 2}(-1)^{g^{*}(b)}$.
The "dual" g^{*} is also bent.)
Generalization to odd p. Mesnager, et al.

Generalized Bent Functions, n even

Theorem (Hodzic, M.,Pasalic)
Let n be even. A gbent function

$$
f(x)=a_{0}(x)+2 a_{1}(x)+\cdots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)
$$

from \mathbb{F}_{2}^{n} to $\mathbb{Z}_{2^{k}}$ is a $(k-1)$-dimensional affine space

$$
\mathcal{A}=a_{k-1} \oplus\left\langle a_{0}, \ldots, a_{k-2}\right\rangle
$$

of bent functions such that for $h_{0}, h_{1}, h_{2}, h_{3} \in \mathcal{A}$ with $h_{0} \oplus h_{1} \oplus h_{2} \oplus h_{3}=0$ we have $h_{0}^{*} \oplus h_{1}^{*} \oplus h_{2}^{*} \oplus h_{3}^{*}=0$.
(Recall, $g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ bent $\Rightarrow \mathcal{W}_{f}(b)=2^{n / 2}(-1)^{g^{*}(b)}$.
The "dual" g^{*} is also bent.)
Generalization to odd p. Mesnager, et al.
Important: A gbent function always has to be seen together with its dimension.

Gbent function and its dimension

Cheating function: $f(x)=2^{k-1} a_{k-1}(x)$ satisfies $\left|\mathcal{H}_{f}^{k}(u)\right|=2^{n / 2}$ if a_{k-1} is a bent function. Value set: $\left\{0,2^{k-1}\right\} \cong \mathbb{F}_{2} ; \operatorname{dim}(\mathcal{L})=0$

Gbent function and its dimension

Cheating function: $f(x)=2^{k-1} a_{k-1}(x)$ satisfies $\left|\mathcal{H}_{f}^{k}(u)\right|=2^{n / 2}$ if a_{k-1} is a bent function. Value set: $\left\{0,2^{k-1}\right\} \cong \mathbb{F}_{2} ; \operatorname{dim}(\mathcal{L})=0$ More general: If

$$
\tilde{f}(x)=b_{0}(x)+2 b_{1}(x)+\cdots+2^{r-2} b_{r-2}(x)+2^{r-1} b_{r-1}(x)
$$

satisfies $\left|\mathcal{H}_{f}^{r}(u)\right|=2^{n / 2}$ and

$$
\mathcal{A}=b_{r-1} \oplus\left\langle b_{0}, \ldots, b_{r-2}\right\rangle=a_{k-1} \oplus\left\langle a_{0}, \ldots, a_{k-2}\right\rangle,
$$

with linearly independent a_{0}, \ldots, a_{k-2}, then

$$
f(x)=a_{0}(x)+2 a_{1}(x)+\cdots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)
$$

is a gbent function from \mathbb{F}_{2}^{n} to $\mathbb{Z}_{2^{k}}$. Its dimension is $k-1$.

Questions

- How can I find meaningful examples.

Questions

- How can I find meaningful examples.
- What about the other characters?

How many character sums can have the "correct" value without that we must have a bent function.
How close can I be at a bent function from character values point of view, without being bent?

Spread Bent Functions

$f: \mathbb{V}_{n} \rightarrow B, \mathbb{V}_{n} \cong \mathbb{F}_{p}^{n}, n$ even, $|B|=p^{k}, k \leq n / 2 .\left(B=\mathbb{Z}_{p}^{k}, \mathbb{Z}_{p^{k}}\right)$
Let $U_{0}, U_{1}, \ldots, U_{p^{m}}$ be the elements of a spread of $\mathbb{V}_{n}, n=2 m$.

Spread Bent Functions

$f: \mathbb{V}_{n} \rightarrow B, \mathbb{V}_{n} \cong \mathbb{F}_{p}^{n}, n$ even, $|B|=p^{k}, k \leq n / 2 .\left(B=\mathbb{Z}_{p}^{k}, \mathbb{Z}_{p^{k}}\right)$
Let $U_{0}, U_{1}, \ldots, U_{p^{m}}$ be the elements of a spread of $\mathbb{V}_{n}, n=2 m$.
Partition of \mathbb{V}_{n}

Spread Bent Functions

$f: \mathbb{V}_{n} \rightarrow B, \mathbb{V}_{n} \cong \mathbb{F}_{p}^{n}, n$ even, $|B|=p^{k}, k \leq n / 2 .\left(B=\mathbb{Z}_{p}^{k}, \mathbb{Z}_{p^{k}}\right)$
Let $U_{0}, U_{1}, \ldots, U_{p^{m}}$ be the elements of a spread of $\mathbb{V}_{n}, n=2 m$.
Partition of \mathbb{V}_{n}
Define a function $f: \mathbb{V}_{n} \rightarrow B$ by

- $f(x)=0$ for $x \in U_{0}$.
- f is constant on the nonzero elements of $U_{i}, 1 \leq i \leq p^{m}$, such that:

Spread Bent Functions

$f: \mathbb{V}_{n} \rightarrow B, \mathbb{V}_{n} \cong \mathbb{F}_{p^{n}}^{n}, n$ even, $|B|=p^{k}, k \leq n / 2 .\left(B=\mathbb{Z}_{p}^{k}, \mathbb{Z}_{p^{k}}\right)$
Let $U_{0}, U_{1}, \ldots, U_{p^{m}}$ be the elements of a spread of $\mathbb{V}_{n}, n=2 m$.
Partition of \mathbb{V}_{n}
Define a function $f: \mathbb{V}_{n} \rightarrow B$ by

- $f(x)=0$ for $x \in U_{0}$.
- f is constant on the nonzero elements of $U_{i}, 1 \leq i \leq p^{m}$, such that: For every $c \in B$ the nonzero elements of exactly p^{m-k} of the U_{i} 'a are mapped to c.

Spread Bent Functions

$f: \mathbb{V}_{n} \rightarrow B, \mathbb{V}_{n} \cong \mathbb{F}_{p^{\prime}}^{n}, n$ even, $|B|=p^{k}, k \leq n / 2 .\left(B=\mathbb{Z}_{p}^{k}, \mathbb{Z}_{p^{k}}\right)$
Let $U_{0}, U_{1}, \ldots, U_{p^{m}}$ be the elements of a spread of $\mathbb{V}_{n}, n=2 m$.
Partition of \mathbb{V}_{n}
Define a function $f: \mathbb{V}_{n} \rightarrow B$ by

- $f(x)=0$ for $x \in U_{0}$.
- f is constant on the nonzero elements of $U_{i}, 1 \leq i \leq p^{m}$, such that: For every $c \in B$ the nonzero elements of exactly p^{m-k} of the U_{i} 'a are mapped to c.
f is then a bent function from \mathbb{V}_{n} to B.

Spread Bent Functions

$f: \mathbb{V}_{n} \rightarrow B, \mathbb{V}_{n} \cong \mathbb{F}_{p^{n}}^{n}, n$ even, $|B|=p^{k}, k \leq n / 2 .\left(B=\mathbb{Z}_{p}^{k}, \mathbb{Z}_{p^{k}}\right)$
Let $U_{0}, U_{1}, \ldots, U_{p^{m}}$ be the elements of a spread of $\mathbb{V}_{n}, n=2 m$.
Partition of \mathbb{V}_{n}
Define a function $f: \mathbb{V}_{n} \rightarrow B$ by

- $f(x)=0$ for $x \in U_{0}$.
- f is constant on the nonzero elements of $U_{i}, 1 \leq i \leq p^{m}$, such that: For every $c \in B$ the nonzero elements of exactly p^{m-k} of the U_{i} 'a are mapped to c.
f is then a bent function from \mathbb{V}_{n} to B.
Here $B=\mathbb{Z}_{p}^{k}$ or $B=\mathbb{Z}_{p^{k}}$.
Most interesting $k=n / 2$: For every $c \in B$ the nonzero elements of exactly 1 of the U_{i} 's, $1 \leq i \leq p^{m}$, are mapped to c.

Spread Bent Functions

Sketch of proof $\left(B=\mathbb{Z}_{p^{k}}\right)$.

$$
\begin{aligned}
\mathcal{H}_{f}^{k}(\alpha, u) & =\sum_{i=0}^{p^{m}} \sum_{z \in U_{i} \backslash\{0\}} \epsilon_{p^{k}}^{\alpha f(z)} \epsilon_{p}^{u \cdot z}+\epsilon_{p^{k}}^{\alpha f(0)} \\
& =\sum_{i=0}^{p^{m}} \sum_{z \in U_{i}} \epsilon_{p^{k}}^{\alpha c_{i}} \epsilon_{p}^{u \cdot z}-\sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}} \\
& =\sum_{i=0}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}} \sum_{z \in U_{i}} \epsilon_{p}^{u \cdot z}-\sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}}
\end{aligned}
$$

$u \in \mathbb{V}_{n}, u \neq 0$, then $u \cdot z$ is trivial on exactly one spread element $U_{i_{u}}$, i.e. $u \cdot z=0$ for all $z \in U_{i_{u}}$.

Spread Bent Functions

Sketch of proof $\left(B=\mathbb{Z}_{p^{k}}\right) . u \neq 0$:

$$
\begin{gathered}
\mathcal{H}_{f}^{k}(\alpha, u)=p^{m} \epsilon_{p^{k}}^{\alpha c_{i u}}-\sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}} \\
\mathcal{H}_{f}^{k}(\alpha, 0)=p^{m}+\left(p^{m}-1\right) \sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}} .
\end{gathered}
$$

$\left(f(x)=c_{i}\right.$ if $\left.x \in U_{i}^{*}, 1 \leq i \leq p^{m}\right)$

Spread Bent Functions

Sketch of proof $\left(B=\mathbb{Z}_{p^{k}}\right) . u \neq 0$:

$$
\begin{gathered}
\mathcal{H}_{f}^{k}(\alpha, u)=p^{m} \epsilon_{p^{k}}^{\alpha c_{i u}}-\sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}} \\
\mathcal{H}_{f}^{k}(\alpha, 0)=p^{m}+\left(p^{m}-1\right) \sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}} .
\end{gathered}
$$

$\left(f(x)=c_{i}\right.$ if $\left.x \in U_{i}^{*}, 1 \leq i \leq p^{m}\right)$
$\sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}}=0$ for all nonzero $\alpha \in \mathbb{Z}_{2^{k}}$.

Spread Gbent Functions

We only need the weaker condition for $\alpha=1$,

$$
\begin{aligned}
& \sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{c_{i}}=0 \\
& p=2: \text { Note } \epsilon_{2^{k}}^{c}=-\epsilon_{2^{k}}^{c+2^{k-1}}
\end{aligned}
$$

Spread Gbent Functions

We only need the weaker condition for $\alpha=1$,

$$
\sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{c_{i}}=0
$$

$p=2$: Note $\epsilon_{2^{k}}^{c}=-\epsilon_{2^{k}}^{c+2^{k-1}}$
Proposition
Gbent functions $f: \mathbb{V}_{n} \rightarrow \mathbb{Z}_{2^{k}}$ from spreads
(M., Martinsen, Stanica (DCC))

Spread $U_{0}, U_{1}, \ldots, U_{2^{m}}$ of $\mathbb{V}_{n}, n=2 m$.
$f: \mathbb{V}_{n} \rightarrow \mathbb{Z}_{2^{k}}:$

- $f(x)=0$ for $x \in U_{0}$.
- f is constant on the nonzero elements of $U_{i}, 1 \leq i \leq 2^{m}$, such that:

Spread Gbent Functions

We only need the weaker condition for $\alpha=1$,

$$
\sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{c_{i}}=0
$$

$p=2$: Note $\epsilon_{2^{k}}^{c}=-\epsilon_{2^{k}}^{c+2^{k-1}}$
Proposition
Gbent functions $f: \mathbb{V}_{n} \rightarrow \mathbb{Z}_{2^{k}}$ from spreads
(M., Martinsen, Stanica (DCC))

Spread $U_{0}, U_{1}, \ldots, U_{2^{m}}$ of $\mathbb{V}_{n}, n=2 m$.
$f: \mathbb{V}_{n} \rightarrow \mathbb{Z}_{2^{k}}:$

- $f(x)=0$ for $x \in U_{0}$.
- f is constant on the nonzero elements of $U_{i}, 1 \leq i \leq 2^{m}$, such that: The number of U_{i} mapped to c and to $c+2^{k-1}$ is the same for every $0 \leq c \leq 2^{k-1}-1$.

Spread Gbent Functions, p odd

Analog: Gbent functions $f: \mathbb{V}_{n} \rightarrow \mathbb{Z}_{p^{k}}$ from spreads, p odd.
Spread $U_{0}, U_{1}, \ldots, U_{p^{m}}$ of $\mathbb{V}_{n} \cong \mathbb{F}_{p}^{n}, n=2 m$.
$f: \mathbb{V}_{n} \rightarrow \mathbb{Z}_{p^{k}}:$

- $f(x)=0$ for $x \in U_{0}$.
- f is constant on the nonzero elements of $U_{i}, 1 \leq i \leq p^{m}$, such that: The number of U_{i} mapped to $c, c+p^{k-1}, c+2 p^{k-1}, \ldots, c+(p-1) p^{k-1}$ is the same for every $0 \leq c \leq p^{k-1}-1$.

Designing gbent functions with prescribed character values

Objective: Prescribe α for which $\left|\mathcal{H}_{f}^{k}(\alpha, u)\right|=2^{n / 2}$ for a meaningful function f from $\mathbb{V}_{n} \cong \mathbb{F}_{2}^{n}$ to the cyclic group $\mathbb{Z}_{2^{k}}$. Take $k=m=n / 2$.

Designing gbent functions with prescribed character values

Objective: Prescribe α for which $\left|\mathcal{H}_{f}^{k}(\alpha, u)\right|=2^{n / 2}$ for a meaningful function f from $\mathbb{V}_{n} \cong \mathbb{F}_{2}^{n}$ to the cyclic group $\mathbb{Z}_{2^{k}}$. Take $k=m=n / 2$.
Remark
$\left|\mathcal{H}_{f}^{k}\left(2^{t} r, u\right)\right|=\left|\mathcal{H}_{f}^{k}\left(2^{t}, u\right)\right|$ for all odd r. (Same order characters) $\mathcal{H}_{f}^{k}\left(2^{t}, u\right)=\mathcal{H}_{2^{t} f}^{k-t}(1, u) \quad\left(2^{t} f: \mathbb{V}_{n} \rightarrow \mathbb{Z}_{2^{k-t}}\right)$.

Designing gbent functions with prescribed character values

Objective: Prescribe α for which $\left|\mathcal{H}_{f}^{k}(\alpha, u)\right|=2^{n / 2}$ for a meaningful function f from $\mathbb{V}_{n} \cong \mathbb{F}_{2}^{n}$ to the cyclic group $\mathbb{Z}_{2^{k}}$. Take $k=m=n / 2$.
Remark
$\left|\mathcal{H}_{f}^{k}\left(2^{t} r, u\right)\right|=\left|\mathcal{H}_{f}^{k}\left(2^{t}, u\right)\right|$ for all odd r. (Same order characters)
$\mathcal{H}_{f}^{k}\left(2^{t}, u\right)=\mathcal{H}_{2^{t} f}^{k-t}(1, u) \quad\left(2^{t} f: \mathbb{V}_{n} \rightarrow \mathbb{Z}_{2^{k-t}}\right)$.
Objective: Construct $f: \mathbb{V}_{n} \rightarrow \mathbb{Z}_{2^{k}}$ such that for a given subset $T \subset\{0,1, \ldots k-1\}$ we have $\left|\mathcal{H}_{f}^{k}\left(2^{t}, u\right)\right|=2^{n / 2}$ if $t \in T$ and $\left|\mathcal{H}_{f}^{k}\left(2^{t}, u\right)\right| \neq 2^{n / 2}$ if $t \notin T$.
Equivalently: Construct f such that for $2^{t} f: \mathbb{V}_{n} \rightarrow \mathbb{Z}_{2^{k-t}}$ the condition $\left({ }^{* *}\right)$ is satisfied if and only if $t \in T$.
We will use spreads.

Bent $\mathbb{V}_{10} \rightarrow \mathbb{Z}_{32}$

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bent $\mathbb{V}_{10} \rightarrow \mathbb{Z}_{32}$

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

With this choice the distribution for $2 f, 4 f, 8 f, 16 f$ is as follows:
$\begin{array}{lcccccccccccccccc}j: & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\ \#: & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$

$$
\begin{array}{lcccccccc}
j: & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
\#: & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
& & & & & & & \\
j: & 0 & 8 & 16 & 24 & j: & 0 & 16 \\
\#: & 9 & 8 & 8 & 8 & \#: & 17 & 16
\end{array} .
$$

$\mathbb{V}_{10} \rightarrow \mathbb{Z}_{32}, 2 f$ not gbent

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	2	2	1	0	1	1	0	1	1	0	1	2	1	1	2	1
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	1	2	1	0	1	1	0	1	1	0	1	2	1	1	2	1

With this choice the distribution for $2 f, 4 f, 8 f, 16 f$ is as follows:

$j:$	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
$\#:$	3	4	2	0	2	2	0	2	2	0	2	4	2	2	4	2

$$
\begin{array}{lcccccccc}
j: & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
\#: & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
& & & & & & & & \\
j: & 0 & 8 & 16 & 24 & j: & 0 & 16 \\
\#: & 9 & 8 & 8 & 8 & \#: & 17 & 16
\end{array} .
$$

\# Value set: 26

$\mathbb{V}_{10} \rightarrow \mathbb{Z}_{32}, 2 f, 8 f$ not gbent

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	2	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	1	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2

With this choice the distribution for $2 f, 4 f, 8 f, 16 f$ is as follows:
$\begin{array}{llllllccccccccccc}j: & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\ \#: & 3 & 0 & 4 & 4 & 2 & 0 & 2 & 4 & 2 & 0 & 0 & 4 & 2 & 0 & 2 & 4\end{array}$

$$
\begin{array}{lcccccccc}
j: & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
\#: & 5 & 0 & 4 & 8 & 4 & 0 & 4 & 8 \\
& & & & & & & & \\
j: & 0 & 8 & 16 & 24 & j: & 0 & 16 \\
\#: & 9 & 0 & 8 & 16 & \#: & 17 & 16
\end{array} .
$$

\# Value set: 22
$\begin{array}{lcccccccccccccccc}j: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ \#: & 3 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 \\ j: & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\ \#: & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0\end{array}$ With this choice the distribution for $2 f, 4 f, 8 f, 16 f$ is as follows:
$\begin{array}{llllllccccccccccc}j: & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\ \#: & 5 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0\end{array}$

$$
\begin{array}{lcccccccc}
j: & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
\#: & 9 & 0 & 8 & 0 & 8 & 0 & 8 & 0 \\
& & & & & & & & \\
j: & 0 & 8 & 16 & 24 & j: & 0 & 16 \\
\#: & 17 & 0 & 16 & 0 & \#: & 33 & 0
\end{array} .
$$

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	3	0	2	0	2	0	2	0	2	0	2	0	2	0	2	0
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	2	0	2	0	2	0	2	0	2	0	2	0	2	0	2	0

With this choice the distribution for $2 f, 4 f, 8 f, 16 f$ is as follows:
$\begin{array}{lcccccccccccccccc}j: & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\ \#: & 5 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0\end{array}$

$$
\begin{array}{lcccccccc}
j: & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
\#: & 9 & 0 & 8 & 0 & 8 & 0 & 8 & 0 \\
& & & & & & & & \\
j: & 0 & 8 & 16 & 24 & j: & 0 & 16 \\
\#: & 17 & 0 & 16 & 0 & \#: & 33 & 0
\end{array} .
$$

Not a gbent function from \mathbb{V}_{10} to \mathbb{Z}_{32}, but a bent function from
\mathbb{V}_{10} to \mathbb{Z}_{16}.

$\mathbb{V}_{10} \rightarrow \mathbb{Z}_{32}$, only $16 f$ not bent!

$\begin{array}{lcccccccccccccccc}j: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ \#: & 1 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 \\ j: & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\ \#: & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2\end{array}$
With this choice the distribution for $2 f, 4 f, 8 f, 16 f$ is as follows:
$\begin{array}{lllllllcccccccccc}j: & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\ \#: & 1 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4\end{array}$

$$
\begin{array}{lcccccccc}
j: & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
\#: & 1 & 8 & 0 & 8 & 0 & 8 & 0 & 8 \\
& & & & & & & & \\
j: & 0 & 8 & 16 & 24 & j: & 0 & 16 \\
\#: & 1 & 16 & 0 & 16 & \#: & 1 & 32
\end{array} .
$$

\# Value set: 17

$\mathbb{V}_{10} \rightarrow \mathbb{Z}_{32}$, only $16 f$ not bent!

$\begin{array}{ccccccccccccccccc}j: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ \#: & 1 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 \\ j: & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\ \#: & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2\end{array}$
With this choice the distribution for $2 f, 4 f, 8 f, 16 f$ is as follows:
$\begin{array}{lcccccccccccccccc}j: & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\ \#: & 1 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4\end{array}$

$$
\begin{array}{lcccccccc}
j: & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
\#: & 1 & 8 & 0 & 8 & 0 & 8 & 0 & 8 \\
& & & & & & & \\
j: & 0 & 8 & 16 & 24 & j: & 0 & 16 \\
\#: & 1 & 16 & 0 & 16 & \#: & 1 & 32
\end{array} .
$$

\# Value set: 17
$\left|\mathcal{H}_{f}^{5}(\alpha, u)\right| \neq 2^{5}$ only for $\alpha=16$.
$f: \mathbb{F}_{3}^{6} \rightarrow \mathbb{Z}_{27}$, bent

$$
\begin{array}{lccccccccc}
j: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\#: & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
j: & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\#: & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
j: & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 \\
\#: & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

With this choice the distribution for $3 f, 9 f$ is as follows:

$$
\begin{array}{lllllccccc}
j: & 0 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 \\
\#: & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
& & & & & & & & & \\
& & & j: & 0 & 9 & 18 & & \\
& & & \#: & 10 & 9 & 9 & &
\end{array}
$$

$f: \mathbb{F}_{3}^{6} \rightarrow \mathbb{Z}_{27}$, gbent, not bent

$$
\begin{array}{lccccccccc}
j: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\#: & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
j: & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\#: & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
j: & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 \\
\#: & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}
$$

With this choice the distribution for $3 f, 9 f$ is as follows:

$$
\begin{array}{lllllccccc}
j: & 0 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 \\
\#: & 4 & 6 & 3 & 3 & 3 & 3 & 3 & 0 & 3 \\
& & & & & & & & & \\
& & & j: & 0 & 9 & 18 & & \\
& & & \#: & 10 & 9 & 9 & &
\end{array}
$$

\# Value set: 24

Gbent functions and their partitions

Gbent functions are "spread-like" functions:
Let $f(x)=a_{0}(x)+\ldots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)$ be a gbent function (then a_{k-1} is bent). Define

$$
P_{z}=\left\{x \in \mathbb{F}_{2}^{n}: f(x)-2^{k-1} a_{k-1}(x)=z\right\}, \quad z \in \mathbb{Z}_{2^{k-1}} .
$$

Partition of $\mathbb{F}_{2}^{n}: \quad \mathcal{P}=\left\{P_{z}: z \in \mathbb{Z}_{2^{k-1}}\right\}$.

Gbent functions and their partitions

Gbent functions are "spread-like" functions:
Let $f(x)=a_{0}(x)+\ldots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)$ be a gbent function (then a_{k-1} is bent). Define

$$
P_{z}=\left\{x \in \mathbb{F}_{2}^{n}: f(x)-2^{k-1} a_{k-1}(x)=z\right\}, \quad z \in \mathbb{Z}_{2^{k-1}} .
$$

Partition of $\mathbb{F}_{2}^{n}: \quad \mathcal{P}=\left\{P_{z}: z \in \mathbb{Z}_{2^{k-1}}\right\}$.
Example (Spread)

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	2	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	1	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2

Gbent functions and their partitions

Gbent functions are "spread-like" functions:
Let $f(x)=a_{0}(x)+\ldots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)$ be a gbent
function (then a_{k-1} is bent). Define

$$
P_{z}=\left\{x \in \mathbb{F}_{2}^{n}: f(x)-2^{k-1} a_{k-1}(x)=z\right\}, \quad z \in \mathbb{Z}_{2^{k-1}} .
$$

Partition of $\mathbb{F}_{2}^{n}: \quad \mathcal{P}=\left\{P_{z}: z \in \mathbb{Z}_{2^{k-1}}\right\}$.
Example (Spread)

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	2	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	1	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2

Partition into 11 sets.

Gbent functions and their partitions

Theorem
(Mesnager et al. also for odd characteristic):
Let \mathcal{P} be the partition for the gbent function
$f(x)=a_{0}(x)+\ldots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)$. For every
function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k-1}}$ which is constant on the elements of \mathcal{P} the function

$$
g(x)=2^{k-1} a_{k-1}(x)+F(x)
$$

satisfies $\left|\mathcal{H}_{f}^{k}(u)\right|=2^{n / 2}$ for all $u \in \mathbb{F}_{2}^{n}$.

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	2	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	1	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2

Gbent functions and their partitions

Theorem
(Mesnager et al. also for odd characteristic):
Let \mathcal{P} be the partition for the gbent function
$f(x)=a_{0}(x)+\ldots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)$. For every
function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k-1}}$ which is constant on the elements of \mathcal{P} the function

$$
g(x)=2^{k-1} a_{k-1}(x)+F(x)
$$

satisfies $\left|\mathcal{H}_{f}^{k}(u)\right|=2^{n / 2}$ for all $u \in \mathbb{F}_{2}^{n}$.

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	2	0	2	0	1	2	1	2	1	0	0	2	1	0	1	2
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	1	0	2	0	1	2	1	2	1	0	0	2	1	0	1	2

Gbent functions and their partitions

Theorem

(Mesnager et al. also for odd characteristic):
Let \mathcal{P} be the partition for the gbent function
$f(x)=a_{0}(x)+\ldots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)$. For every
function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k-1}}$ which is constant on the elements of \mathcal{P}
the function

$$
g(x)=2^{k-1} a_{k-1}(x)+F(x)
$$

satisfies $\left|\mathcal{H}_{f}^{k}(u)\right|=2^{n / 2}$ for all $u \in \mathbb{F}_{2}^{n}$.

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	2	0	2	0	3	0	1	2	1	0	0	2	1	0	1	2
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	1	0	2	0	3	0	1	2	1	0	0	2	1	0	1	2

Gbent functions and their partitions

Theorem

(Mesnager et al. also for odd characteristic):
Let \mathcal{P} be the partition for the gbent function
$f(x)=a_{0}(x)+\ldots+2^{k-2} a_{k-2}(x)+2^{k-1} a_{k-1}(x)$. For every
function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k-1}}$ which is constant on the elements of \mathcal{P}
the function

$$
g(x)=2^{k-1} a_{k-1}(x)+F(x)
$$

satisfies $\left|\mathcal{H}_{f}^{k}(u)\right|=2^{n / 2}$ for all $u \in \mathbb{F}_{2}^{n}$.

$j:$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#:$	2	0	2	0	3	0	1	2	1	0	0	2	1	0	1	2
$j:$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$\#:$	1	0	2	0	3	0	1	2	1	0	0	2	1	0	1	2

NOTE: A spread can do more!

Questions

Is there something but (partial) spreads?

Questions

Is there something but (partial) spreads?

- Find gbent functions $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ which do not come from (partial) spreads for $k \geq 3$.
- What is the largest k (depending on n ?) for which there exists a gbent function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ not coming from spreads?

Questions

Is there something but (partial) spreads?

- Find gbent functions $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ which do not come from (partial) spreads for $k \geq 3$.
- What is the largest k (depending on n ?) for which there exists a gbent function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ not coming from spreads?
- Find bent functions $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ which do not come from spreads for $3 \leq k \leq n / 2$.
- What is the largest k (depending on n ?) for which there exists a bent function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ not coming from spreads?

Questions

Is there something but (partial) spreads?

- Find gbent functions $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ which do not come from (partial) spreads for $k \geq 3$.
- What is the largest k (depending on n ?) for which there exists a gbent function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ not coming from spreads?
- Find bent functions $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ which do not come from spreads for $3 \leq k \leq n / 2$.
- What is the largest k (depending on n ?) for which there exists a bent function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$ not coming from spreads?
Is there a gbent function from \mathbb{F}_{2}^{n} to $\mathbb{Z}_{2^{k}}$ for $k>n / 2$?
- What is the largest k, for which there exists a gbent function from \mathbb{F}_{2}^{n} to $\mathbb{Z}_{2^{k}}$?
All questions make also sense for functions from \mathbb{F}_{p}^{n} to $\mathbb{Z}_{p^{k}}$.

