Generalized bent functions from spreads and their spectra

Wilfried Meidl, Alexander Pott

RICAM, Linz; Otto von Guericke University Magdeburg

July 4, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

Let A, B be (abelian) groups, f a function from A to B. Then f is called a bent function if

$$|\sum_{x\in A}\chi(x,f(x))|=\sqrt{|A|}$$

for every character χ of $A \times B$ which is nontrivial on B.

 $R = \{(x, f(x)) : x \in A\}$ is a (|A|, |B|, |A|, |A|/|B|) relative difference set in $A \times B$, relative to B.

Definition

Let A, B be (abelian) groups, f a function from A to B. Then f is called a bent function if

$$|\sum_{x\in A}\chi(x,f(x))|=\sqrt{|A|}$$

for every character χ of $A \times B$ which is nontrivial on B.

 $R = \{(x, f(x)) : x \in A\}$ is a (|A|, |B|, |A|, |A|/|B|) relative difference set in $A \times B$, relative to B.

Examples:

Boolean bent function, *p*-ary bent function, $f : \mathbb{F}_p^n \to \mathbb{F}_p$.

$$|\mathcal{W}_f(u)| = |\sum_{x \in \mathbb{F}_p^n} \epsilon_p^{f(x)-u \cdot x}| = p^{n/2},$$

for all $u \in \mathbb{F}_p^n$. $(\epsilon_p = e^{2\pi i/p}, \epsilon_2 = -1)$

Vectorial bent function $f : \mathbb{F}_p^n \to \mathbb{F}_p^m$.

$$|\mathcal{W}_f(a,b)| = |\sum_{x\in\mathbb{F}_p^n}\epsilon_p^{a\cdot f(x)-b\cdot x}| = p^{n/2},$$

for all nonzero $a \in \mathbb{F}_p^m$ and $b \in \mathbb{F}_p^n$. The component functions $\{a \cdot f(x) : a \neq 0\}$ form a linear space of *p*-ary (Boolean) bent functions of dimension *m*.

Vectorial bent function $f : \mathbb{F}_p^n \to \mathbb{F}_p^m$.

$$|\mathcal{W}_f(a,b)| = |\sum_{x\in\mathbb{F}_p^n} \epsilon_p^{a\cdot f(x)-b\cdot x}| = p^{n/2},$$

for all nonzero $a \in \mathbb{F}_p^m$ and $b \in \mathbb{F}_p^n$. The component functions $\{a \cdot f(x) : a \neq 0\}$ form a linear space of *p*-ary (Boolean) bent functions of dimension *m*.

$$f: \mathbb{F}_2^n \to \mathbb{Z}_{2^k} \quad (f: \mathbb{F}_p^n \to \mathbb{Z}_{p^k})$$
$$\mathcal{H}_f^k(\alpha, u) = \sum_{x \in \mathbb{F}_2^n} \zeta_{2^k}^{\alpha \cdot f(x)} (-1)^{u \cdot x}, \quad \zeta_{2^k} = e^{2\pi i/2^k},$$

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$ and all nonzero $\alpha \in \mathbb{Z}_{2^k}$.

Generalized Bent Functions

Definition

K.U. Schmidt (2009) A function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is called a generalized bent function (gbent function) if

$$\mathcal{H}_f^k(u) = \sum_{x \in \mathbb{F}_2^n} \zeta_{2^k}^{f(x)} (-1)^{u \cdot x},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$.

Generalized Bent Functions

Definition

K.U. Schmidt (2009) A function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is called a generalized bent function (gbent function) if

$$\mathcal{H}_f^k(u) = \sum_{x \in \mathbb{F}_2^n} \zeta_{2^k}^{f(x)} (-1)^{u \cdot x},$$

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$.

Note: $|\sum_{x \in \mathbb{F}_2^n} \chi(x, f(x))| = 2^{n/2}$ is required only for the characters of order 2^{k-1} . In general NOT a relative difference set (bent function).

Generalized Bent Functions

Definition

K.U. Schmidt (2009) A function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ is called a generalized bent function (gbent function) if

$$\mathcal{H}_f^k(u) = \sum_{x \in \mathbb{F}_2^n} \zeta_{2^k}^{f(x)} (-1)^{u \cdot x},$$

has absolute value $2^{n/2}$ for all $u \in \mathbb{F}_2^n$.

Note: $|\sum_{x \in \mathbb{F}_2^n} \chi(x, f(x))| = 2^{n/2}$ is required only for the characters of order 2^{k-1} . In general NOT a relative difference set (bent function).

Questions:

Does this definition give anything interesting?

Not accepted: Cheating function: $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$, $f(x) = 2^{k-1}a(x)$, where $a : \mathbb{V}_2^n \to \mathbb{F}_2$ is bent.

<ロ>

Theorem (Hodzic, M.,Pasalic) Let n be even. A gbent function

$$f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$$

from \mathbb{F}_2^n to \mathbb{Z}_{2^k} is a (k-1)-dimensional affine space

$$\mathcal{A} = a_{k-1} \oplus \langle a_0, \ldots, a_{k-2} \rangle$$

of bent functions such that for h_0 , h_1 , h_2 , $h_3 \in \mathcal{A}$ with $h_0 \oplus h_1 \oplus h_2 \oplus h_3 = 0$ we have $h_0^* \oplus h_1^* \oplus h_2^* \oplus h_3^* = 0$. (Recall, $g : \mathbb{F}_2^n \to \mathbb{F}_2$ bent $\Rightarrow \mathcal{W}_f(b) = 2^{n/2}(-1)^{g^*(b)}$. The "dual" g^* is also bent.)

Theorem (Hodzic, M.,Pasalic) Let n be even. A gbent function

$$f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$$

from \mathbb{F}_2^n to \mathbb{Z}_{2^k} is a (k-1)-dimensional affine space

$$\mathcal{A} = a_{k-1} \oplus \langle a_0, \ldots, a_{k-2} \rangle$$

of bent functions such that for $h_0, h_1, h_2, h_3 \in \mathcal{A}$ with $h_0 \oplus h_1 \oplus h_2 \oplus h_3 = 0$ we have $h_0^* \oplus h_1^* \oplus h_2^* \oplus h_3^* = 0$. (Recall, $g : \mathbb{F}_2^n \to \mathbb{F}_2$ bent $\Rightarrow \mathcal{W}_f(b) = 2^{n/2} (-1)^{g^*(b)}$. The "dual" g^* is also bent.)

Generalization to odd p. Mesnager, et al.

Theorem (Hodzic, M.,Pasalic) Let n be even. A gbent function

$$f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$$

from \mathbb{F}_2^n to \mathbb{Z}_{2^k} is a (k-1)-dimensional affine space

$$\mathcal{A} = a_{k-1} \oplus \langle a_0, \ldots, a_{k-2} \rangle$$

of bent functions such that for $h_0, h_1, h_2, h_3 \in \mathcal{A}$ with $h_0 \oplus h_1 \oplus h_2 \oplus h_3 = 0$ we have $h_0^* \oplus h_1^* \oplus h_2^* \oplus h_3^* = 0$. (Recall, $g : \mathbb{F}_2^n \to \mathbb{F}_2$ bent $\Rightarrow \mathcal{W}_f(b) = 2^{n/2} (-1)^{g^*(b)}$. The "dual" g^* is also bent.)

Generalization to odd p. Mesnager, et al.

Important: A gbent function always has to be seen together with its dimension.

Gbent function and its dimension

Cheating function: $f(x) = 2^{k-1}a_{k-1}(x)$ satisfies $|\mathcal{H}_f^k(u)| = 2^{n/2}$ if a_{k-1} is a bent function. Value set: $\{0, 2^{k-1}\} \cong \mathbb{F}_2$; dim $(\mathcal{L}) = 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gbent function and its dimension

Cheating function: $f(x) = 2^{k-1}a_{k-1}(x)$ satisfies $|\mathcal{H}_{f}^{k}(u)| = 2^{n/2}$ if a_{k-1} is a bent function. Value set: $\{0, 2^{k-1}\} \cong \mathbb{F}_{2}$; dim $(\mathcal{L}) = 0$ More general: If

$$\begin{split} \tilde{f}(x) &= b_0(x) + 2b_1(x) + \dots + 2^{r-2}b_{r-2}(x) + 2^{r-1}b_{r-1}(x) \\ \text{satisfies } |\mathcal{H}_f^r(u)| &= 2^{n/2} \text{ and} \\ \mathcal{A} &= b_{r-1} \oplus \langle b_0, \dots, b_{r-2} \rangle = a_{k-1} \oplus \langle a_0, \dots, a_{k-2} \rangle, \\ \text{with linearly independent } a_0, \dots, a_{k-2}, \text{ then} \end{split}$$

 $f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$

is a gbent function from \mathbb{F}_2^n to \mathbb{Z}_{2^k} . Its dimension is k-1.

• How can I find meaningful examples.

- How can I find meaningful examples.
- What about the other characters? How many character sums can have the "correct" value without that we must have a bent function. How close can I be at a bent function from character values point of view, without being bent?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $f: \mathbb{V}_n \to B, \mathbb{V}_n \cong \mathbb{F}_p^n, n \text{ even}, |B| = p^k, k \le n/2. \ (B = \mathbb{Z}_p^k, \mathbb{Z}_{p^k})$ Let U_0, U_1, \dots, U_{p^m} be the elements of a spread of $\mathbb{V}_n, n = 2m$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $f : \mathbb{V}_n \to B, \mathbb{V}_n \cong \mathbb{F}_p^n, n \text{ even, } |B| = p^k, k \le n/2. \ (B = \mathbb{Z}_p^k, \mathbb{Z}_{p^k})$ Let U_0, U_1, \dots, U_{p^m} be the elements of a spread of $\mathbb{V}_n, n = 2m$. Partition of \mathbb{V}_n

 $f: \mathbb{V}_n \to B, \mathbb{V}_n \cong \mathbb{F}_p^n, n \text{ even, } |B| = p^k, k \le n/2. \ (B = \mathbb{Z}_p^k, \mathbb{Z}_{p^k})$ Let U_0, U_1, \dots, U_{p^m} be the elements of a spread of $\mathbb{V}_n, n = 2m$. Partition of \mathbb{V}_n

Define a function $f : \mathbb{V}_n \to B$ by

- f(x) = 0 for $x \in U_0$.

 $f: \mathbb{V}_n \to B, \mathbb{V}_n \cong \mathbb{F}_p^n, n \text{ even, } |B| = p^k, k \le n/2. \ (B = \mathbb{Z}_p^k, \mathbb{Z}_{p^k})$ Let U_0, U_1, \dots, U_{p^m} be the elements of a spread of $\mathbb{V}_n, n = 2m$. Partition of \mathbb{V}_n

Define a function $f : \mathbb{V}_n \to B$ by

- f(x) = 0 for $x \in U_0$.
- *f* is constant on the nonzero elements of U_i, 1 ≤ i ≤ p^m, such that: For every c ∈ B the nonzero elements of exactly p^{m-k} of the U_i'a are mapped to c.

 $f: \mathbb{V}_n \to B, \mathbb{V}_n \cong \mathbb{F}_p^n, n \text{ even, } |B| = p^k, k \le n/2. \ (B = \mathbb{Z}_p^k, \mathbb{Z}_{p^k})$ Let $U_0, U_1, \ldots, U_{p^m}$ be the elements of a spread of $\mathbb{V}_n, n = 2m$. Partition of \mathbb{V}_n

Define a function $f : \mathbb{V}_n \to B$ by

- f(x) = 0 for $x \in U_0$.
- *f* is constant on the nonzero elements of U_i, 1 ≤ i ≤ p^m, such that: For every c ∈ B the nonzero elements of exactly p^{m-k} of the U_i'a are mapped to c.

f is then a bent function from \mathbb{V}_n to B.

 $f: \mathbb{V}_n \to B, \mathbb{V}_n \cong \mathbb{F}_p^n, n \text{ even, } |B| = p^k, k \le n/2. \ (B = \mathbb{Z}_p^k, \mathbb{Z}_{p^k})$ Let $U_0, U_1, \ldots, U_{p^m}$ be the elements of a spread of $\mathbb{V}_n, n = 2m$. Partition of \mathbb{V}_n

Define a function $f : \mathbb{V}_n \to B$ by

•
$$f(x) = 0$$
 for $x \in U_0$.

- *f* is constant on the nonzero elements of U_i, 1 ≤ i ≤ p^m, such that: For every c ∈ B the nonzero elements of exactly p^{m-k} of the U_i'a are mapped to c.
- f is then a bent function from \mathbb{V}_n to B.

Here $B = \mathbb{Z}_p^k$ or $B = \mathbb{Z}_{p^k}$.

Most interesting k = n/2: For every $c \in B$ the nonzero elements of exactly 1 of the U_i 's, $1 \le i \le p^m$, are mapped to c.

Sketch of proof $(B = \mathbb{Z}_{p^k})$.

$$\mathcal{H}_{f}^{k}(\alpha, u) = \sum_{i=0}^{p^{m}} \sum_{z \in U_{i} \setminus \{0\}} \epsilon_{p^{k}}^{\alpha f(z)} \epsilon_{p}^{u \cdot z} + \epsilon_{p^{k}}^{\alpha f(0)}$$
$$= \sum_{i=0}^{p^{m}} \sum_{z \in U_{i}} \epsilon_{p^{k}}^{\alpha c_{i}} \epsilon_{p^{k}}^{u \cdot z} - \sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}}$$
$$= \sum_{i=0}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}} \sum_{z \in U_{i}} \epsilon_{p^{k}}^{u \cdot z} - \sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}}.$$

 $u \in \mathbb{V}_n$, $u \neq 0$, then $u \cdot z$ is trivial on exactly one spread element U_{i_u} , i.e. $u \cdot z = 0$ for all $z \in U_{i_u}$.

Sketch of proof $(B = \mathbb{Z}_{p^k})$. $u \neq 0$:

$$\mathcal{H}_{f}^{k}(\alpha, u) = p^{m} \epsilon_{p^{k}}^{\alpha c_{i_{u}}} - \sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}}.$$

$$\mathcal{H}_f^k(\alpha,0) = p^m + (p^m - 1) \sum_{i=1}^{p^m} \epsilon_{p^k}^{\alpha c_i}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $(f(x) = c_i \text{ if } x \in U_i^*, 1 \leq i \leq p^m)$

Sketch of proof $(B = \mathbb{Z}_{p^k})$. $u \neq 0$:

$$\mathcal{H}_{f}^{k}(\alpha, u) = \rho^{m} \epsilon_{p^{k}}^{\alpha c_{i_{u}}} - \sum_{i=1}^{p^{m}} \epsilon_{p^{k}}^{\alpha c_{i}}.$$

$$\mathcal{H}_{f}^{k}(\alpha,0)=p^{m}+(p^{m}-1)\sum_{i=1}^{p^{m}}\epsilon_{p^{k}}^{\alpha c_{i}}.$$

 $(f(x) = c_i \text{ if } x \in U_i^*, 1 \leq i \leq p^m)$

 $\sum_{i=1}^{p^m} \epsilon_{p^k}^{\alpha c_i} = 0 \text{ for all nonzero } \alpha \in \mathbb{Z}_{2^k}.$

We only need the weaker condition for $\alpha = 1$,

$$\sum_{i=1}^{p^m} \epsilon_{p^k}^{c_i} = 0$$

p = 2: Note $\epsilon_{2^{k}}^{c} = -\epsilon_{2^{k}}^{c+2^{k-1}}$

We only need the weaker condition for $\alpha = 1$,

$$\sum_{i=1}^{p^m} \epsilon_{p^k}^{c_i} = 0$$

$$p = 2$$
: Note $\epsilon_{2^k}^c = -\epsilon_{2^k}^{c+2^{k-1}}$

Proposition

Gbent functions $f : \mathbb{V}_n \to \mathbb{Z}_{2^k}$ from spreads (M., Martinsen, Stanica (DCC))

Spread
$$U_0, U_1, \ldots, U_{2^m}$$
 of $\mathbb{V}_n, n = 2m$.

 $f: \mathbb{V}_n \to \mathbb{Z}_{2^k}$:

•
$$f(x) = 0$$
 for $x \in U_0$.

We only need the weaker condition for $\alpha = 1$,

$$\sum_{i=1}^{p^m} \epsilon_{p^k}^{c_i} = 0$$

$$p = 2$$
: Note $\epsilon_{2^k}^c = -\epsilon_{2^k}^{c+2^{k-1}}$

Proposition

Gbent functions $f : \mathbb{V}_n \to \mathbb{Z}_{2^k}$ from spreads (M., Martinsen, Stanica (DCC))

Spread
$$U_0, U_1, \ldots, U_{2^m}$$
 of $\mathbb{V}_n, n = 2m$.

 $f: \mathbb{V}_n \to \mathbb{Z}_{2^k}$:

- f(x) = 0 for $x \in U_0$.
- *f* is constant on the nonzero elements of U_i, 1 ≤ i ≤ 2^m, such that: The number of U_i mapped to c and to c + 2^{k-1} is the same for every 0 ≤ c ≤ 2^{k-1} − 1. (**)

Spread Gbent Functions, p odd

Analog: Gbent functions $f : \mathbb{V}_n \to \mathbb{Z}_{p^k}$ from spreads, p odd. Spread $U_0, U_1, \ldots, U_{p^m}$ of $\mathbb{V}_n \cong \mathbb{F}_p^n$, n = 2m. $f : \mathbb{V}_n \to \mathbb{Z}_{p^k}$:

- f(x) = 0 for $x \in U_0$.
- *f* is constant on the nonzero elements of U_i, 1 ≤ i ≤ p^m, such that: The number of U_i mapped to
 c, *c* + p^{k-1}, *c* + 2p^{k-1},..., *c* + (p − 1)p^{k-1} is the same for
 every 0 ≤ c ≤ p^{k-1} − 1.

Designing gbent functions with prescribed character values

Objective: Prescribe α for which $|\mathcal{H}_{f}^{k}(\alpha, u)| = 2^{n/2}$ for a meaningful function f from $\mathbb{V}_{n} \cong \mathbb{F}_{2}^{n}$ to the cyclic group $\mathbb{Z}_{2^{k}}$. Take k = m = n/2.

Designing gbent functions with prescribed character values

Objective: Prescribe α for which $|\mathcal{H}_{f}^{k}(\alpha, u)| = 2^{n/2}$ for a meaningful function f from $\mathbb{V}_{n} \cong \mathbb{F}_{2}^{n}$ to the cyclic group $\mathbb{Z}_{2^{k}}$. Take k = m = n/2.

Remark

$$\begin{split} |\mathcal{H}_{f}^{k}(2^{t}r,u)| &= |\mathcal{H}_{f}^{k}(2^{t},u)| \text{ for all odd } r. \text{ (Same order characters)} \\ \mathcal{H}_{f}^{k}(2^{t},u) &= \mathcal{H}_{2^{t}f}^{k-t}(1,u) \quad (2^{t}f:\mathbb{V}_{n}\to\mathbb{Z}_{2^{k-t}}). \end{split}$$

Designing gbent functions with prescribed character values

Objective: Prescribe α for which $|\mathcal{H}_{f}^{k}(\alpha, u)| = 2^{n/2}$ for a meaningful function f from $\mathbb{V}_{n} \cong \mathbb{F}_{2}^{n}$ to the cyclic group $\mathbb{Z}_{2^{k}}$. Take k = m = n/2.

Remark

$$\begin{split} |\mathcal{H}_{f}^{k}(2^{t}r,u)| &= |\mathcal{H}_{f}^{k}(2^{t},u)| \text{ for all odd } r. \text{ (Same order characters)} \\ \mathcal{H}_{f}^{k}(2^{t},u) &= \mathcal{H}_{2^{t}f}^{k-t}(1,u) \quad (2^{t}f:\mathbb{V}_{n}\to\mathbb{Z}_{2^{k-t}}). \end{split}$$

Objective: Construct $f : \mathbb{V}_n \to \mathbb{Z}_{2^k}$ such that for a given subset $T \subset \{0, 1, \dots, k-1\}$ we have $|\mathcal{H}_f^k(2^t, u)| = 2^{n/2}$ if $t \in T$ and $|\mathcal{H}_f^k(2^t, u)| \neq 2^{n/2}$ if $t \notin T$.

Equivalently: Construct f such that for $2^t f : \mathbb{V}_n \to \mathbb{Z}_{2^{k-t}}$ the condition (**) is satisfied if and only if $t \in T$.

We will use spreads.

Bent $\mathbb{V}_{10} \to \mathbb{Z}_{32}$

j :	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
#:	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
j :	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
#:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

<□ > < @ > < E > < E > E のQ @

Bent $\mathbb{V}_{10} \to \mathbb{Z}_{32}$

15 1 j: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 #: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 With this choice the distribution for 2f, 4f, 8f, 16f is as follows: *j*: 0 4 8 12 16 20 24 28 #: 5 4 4 4 4 4 4 4 *j*: 0 8 16 24 *j*: 0 16 #: 9 8 8 8 #: 17 16[.]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\mathbb{V}_{10} \rightarrow \mathbb{Z}_{32}$, 2*f* not gbent

2 1 1 *i* : 16 17 18 21 22 #: 2 1 With this choice the distribution for 2f, 4f, 8f, 16f is as follows: j: 0 2 4 6 8 10 12 14 16 18 20 #: 3 4 2 0 2 2 0 2 2 0 2 12 14 2 2 *j*: 0 4 8 12 16 20 24 28 #: 5 4 4 4 4 4 4 4 24 28 $j: 0 8 16 24 j: 0 16 \\ #: 9 8 8 8 #: 17 16$

Value set: 26

 $\mathbb{V}_{10} \rightarrow \mathbb{Z}_{32}$, 2*f*, 8*f* not gbent

2 1 0 j: 16 17 18 19 20 21 22 23 24 #: 2 1 With this choice the distribution for 2f, 4f, 8f, 16f is as follows: *j*: 0 2 4 6 8 10 12 14 16 #: 3 0 4 4 2 0 2 4 2 *j*: 0 4 8 12 16 20 24 28 #: 5 0 4 8 4 0 4 8 24 28 $j: 0 8 16 24 j: 0 16 \\ #: 9 0 8 16 #: 17 16$

Value set: 22

0 1 2 3 4 5 6 7 8 9 10 11 3 0 2 0 2 0 2 0 2 0 2 0 2 0 *j*: #: *i* : 17 18 19 20 21 22 23 24 25 2 0 2 0 #: With this choice the distribution for 2f, 4f, 8f, 16f is as follows: j : 0 2 4 6 8 10 12 14 16 5 0 4 0 4 #: 4 0 4 *j*: 0 4 8 12 #: 9 0 8 0 24 28 *j*: 0 8 16 24 *j*: 0 16 #: 17 0 16 0 #: 33 0 .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

j: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #: 3 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 16 17 18 19 20 21 22 23 24 25 26 27 *i* : 28 29 2 0 2 0 2 0 2 0 2 0 2 0 #: With this choice the distribution for 2f, 4f, 8f, 16f is as follows: j: 0 2 4 6 8 10 12 14 16 18#: 5 0 4 0 4 0 4 0 4 0 0 4 *j*: 0 4 8 12 16 20 24 28 #: 9 0 8 0 8 0 8 0 $j: 0 8 16 24 j: 0 16 \\ #: 17 0 16 0 #: 33 0$ Not a gbent function from \mathbb{V}_{10} to \mathbb{Z}_{32} , but a bent function from \mathbb{V}_{10} to \mathbb{Z}_{16} .

$\mathbb{V}_{10} \rightarrow \mathbb{Z}_{32}$, only 16*f* not bent!

j :	0		1	2	3	4	ļ	5	6	7	8	9	10	11	12	13	14	15
#:	1	2	2	0	2	0	2	2	0	2	0	2	0	2	0	2	0	2
<i>j</i> :	16	1	7	18	19	20) 2	1	22	23	24	25	26	27	28	29	30	31
#:	0	2	2	0	2	0	2	2	0	2	0	2	0	2	0	2	0	2
Wit	h t	his	ch	oice	e the	e di	stril	ou [.]	tion	for	2f,	4f,8	3 <i>f</i> ,1	.6 <i>f</i> i	s as	follo	ows:	
<i>i</i> :	0	2	4	6	8	10	12	2	14	16	18	20	22	24	26	28	30	
#:	1	4	0	4	0	4	0		4	0	4	0	4	0	4	0	4	
					j :	0	4	8	12	16	20	24	28					
				7	# :	1	8	0	8	0	8	0	8					
					j :	0	8	1	6 2	24	<i>j</i> :	0	16					
				7	¥:	1	16	() :	16	#:	1	32	•				
# V	alu	e se	et:	17														

$\mathbb{V}_{10} \rightarrow \mathbb{Z}_{32}$, only 16*f* not bent!

j:	0		1	2	3	4	5 2	6	7	8	9 2	10	11 2	12	13	14	15 2	
# ·	T	4	2	0	2	0	2	0	2	0	2	0	2	0	2	0	2	
j :	16	1	7	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
#:	0	-	2	0	2	0	2	0	2	0	2	0	2	0	2	0	2	
Wit	h t	his	ch	oice	e th	e dis	strib	ution	for	2f,	4f,8	3 <i>f</i> ,1	.6 <i>f</i> i	s as	follc	WS:		
<i>i</i> :	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30		
#:	1	4	0	4	0	4	0	4	0	4	0	4	0	4	0	4		
				-	j : ⊭:	0 1	4 8 8 0	12 8	16 0	20 8	24 0	28 8						
					j :	0	8	16 2	24	j :	0	16						
				7	#:	1	16	0 :	16	#:	1	32	•					
# V	alu	e se	et:	17														
$\mathcal{H}^5_f(a)$	α, μ	ı) :	≠ 2	2 ⁵ o	only	for	$\alpha =$	16.			<		∂	(≣)	< 注 →		৩৫৫	~

$f: \mathbb{F}_3^6 \to \mathbb{Z}_{27}$, bent

j :	0	1	2	3	4	5	6	7	8
#:	2	1	1	1	1	1	1	1	
<i>j</i> :	9	10	11	12	13	14	15	16	17
#:	1	1	1	1	1	1	1	1	1
<i>j</i> :	18	19	20	21	22	23	24	25	26
#:	1	1	1	1	1	1	1	1	1

With this choice the distribution for 3f, 9f is as follows:

j :	0	3	6	9	12	15	18	21	24
#:	4	3	3	3	3	3	3	3	3
			j #	: :	0 10	9 9	18 9		

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$f: \mathbb{F}_3^6 \to \mathbb{Z}_{27}$, gbent, not bent

j :	0	1	2	3	4	5	6	7	8
#:	2	2	1	1	1	1	1	0	1
j :	9	10	11	12	13	14	15	16	17
#:	1	2	1	1	1	1	1	0	1
j :	18	19	20	21	22	23	24	25	26
#:	1	2	1	1	1	1	1	0	1

With this choice the distribution for 3f, 9f is as follows:

j :	0	3	6	9	12	15	5 18	21	24
#:	4	6	3	3	3	3	3	0	3
			j	1	0	9	18		
			#	:	10	9	9		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Value set: 24

Gbent functions are "spread-like" functions: Let $f(x) = a_0(x) + \ldots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$ be a gbent function (then a_{k-1} is bent). Define

 $P_z = \{x \in \mathbb{F}_2^n : f(x) - 2^{k-1}a_{k-1}(x) = z\}, \quad z \in \mathbb{Z}_{2^{k-1}}.$

Partition of \mathbb{F}_2^n : $\mathcal{P} = \{P_z : z \in \mathbb{Z}_{2^{k-1}}\}.$

Gbent functions are "spread-like" functions: Let $f(x) = a_0(x) + \ldots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$ be a gbent function (then a_{k-1} is bent). Define

 $P_z = \{x \in \mathbb{F}_2^n : f(x) - 2^{k-1}a_{k-1}(x) = z\}, \quad z \in \mathbb{Z}_{2^{k-1}}.$

Partition of \mathbb{F}_2^n : $\mathcal{P} = \{P_z : z \in \mathbb{Z}_{2^{k-1}}\}.$

Example (Spread)

j :	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
#:	2	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2
j :	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
#:	1	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2

Gbent functions are "spread-like" functions: Let $f(x) = a_0(x) + \ldots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$ be a gbent function (then a_{k-1} is bent). Define

 $P_z = \{x \in \mathbb{F}_2^n : f(x) - 2^{k-1}a_{k-1}(x) = z\}, \quad z \in \mathbb{Z}_{2^{k-1}}.$

Partition of \mathbb{F}_2^n : $\mathcal{P} = \{ P_z : z \in \mathbb{Z}_{2^{k-1}} \}.$

Example (Spread)

Partition into 11 sets.

Theorem (Mesnager et al. also for odd characteristic): Let \mathcal{P} be the partition for the gbent function $f(x) = a_0(x) + \ldots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$. For every function $F : \mathbb{F}_2^n \to \mathbb{Z}_{2^{k-1}}$ which is constant on the elements of \mathcal{P} the function

$$g(x) = 2^{k-1}a_{k-1}(x) + F(x)$$

satisfies $|\mathcal{H}_{f}^{k}(u)| = 2^{n/2}$ for all $u \in \mathbb{F}_{2}^{n}$.

j :	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
#:	2	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2
<i>j</i> :	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
#:	1	0	2	2	1	0	1	2	1	0	0	2	1	0	1	2

Theorem (Mesnager et al. also for odd characteristic): Let \mathcal{P} be the partition for the gbent function $f(x) = a_0(x) + \ldots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$. For every function $F : \mathbb{F}_2^n \to \mathbb{Z}_{2^{k-1}}$ which is constant on the elements of \mathcal{P} the function

$$g(x) = 2^{k-1}a_{k-1}(x) + F(x)$$

satisfies $|\mathcal{H}_{f}^{k}(u)| = 2^{n/2}$ for all $u \in \mathbb{F}_{2}^{n}$.

j :	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
#:	2	0	2	0	1	2	1	2	1	0	0	2	1	0	1	2
<i>j</i> :	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
#:	1	0	2	0	1	2	1	2	1	0	0	2	1	0	1	2

Theorem (Mesnager et al. also for odd characteristic): Let \mathcal{P} be the partition for the gbent function $f(x) = a_0(x) + \ldots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$. For every function $F : \mathbb{F}_2^n \to \mathbb{Z}_{2^{k-1}}$ which is constant on the elements of \mathcal{P} the function

$$g(x) = 2^{k-1}a_{k-1}(x) + F(x)$$

satisfies $|\mathcal{H}_{f}^{k}(u)| = 2^{n/2}$ for all $u \in \mathbb{F}_{2}^{n}$.

j :	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
#:	2	0	2	0	3	0	1	2	1	0	0	2	1	0	1	2
<i>j</i> :	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
#:	1	0	2	0	3	0	1	2	1	0	0	2	1	0	1	2

Theorem (Mesnager et al. also for odd characteristic): Let \mathcal{P} be the partition for the gbent function $f(x) = a_0(x) + \ldots + 2^{k-2}a_{k-2}(x) + 2^{k-1}a_{k-1}(x)$. For every function $F : \mathbb{F}_2^n \to \mathbb{Z}_{2^{k-1}}$ which is constant on the elements of \mathcal{P} the function

$$g(x) = 2^{k-1}a_{k-1}(x) + F(x)$$

satisfies $|\mathcal{H}_{f}^{k}(u)| = 2^{n/2}$ for all $u \in \mathbb{F}_{2}^{n}$.

j :	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
#:	2	0	2	0	3	0	1	2	1	0	0	2	1	0	1	2
j :	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
#:	1	0	2	0	3	0	1	2	1	0	0	2	1	0	1	2

NOTE: A spread can do more!

Is there something but (partial) spreads?

Is there something but (partial) spreads?

- Find gbent functions f : 𝔽ⁿ₂ → ℤ_{2^k} which do not come from (partial) spreads for k ≥ 3.
- ▶ What is the largest k (depending on n?) for which there exists a gbent function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ not coming from spreads?

Is there something but (partial) spreads?

- Find gbent functions f : 𝔽ⁿ₂ → ℤ_{2^k} which do not come from (partial) spreads for k ≥ 3.
- ▶ What is the largest k (depending on n?) for which there exists a gbent function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ not coming from spreads?
- Find bent functions f : 𝔽ⁿ₂ → ℤ_{2^k} which do not come from spreads for 3 ≤ k ≤ n/2.
- What is the largest k (depending on n?) for which there exists a bent function f : 𝔽ⁿ₂ → ℤ_{2^k} not coming from spreads?

Is there something but (partial) spreads?

- Find gbent functions f : 𝔽ⁿ₂ → ℤ_{2^k} which do not come from (partial) spreads for k ≥ 3.
- ▶ What is the largest k (depending on n?) for which there exists a gbent function $f : \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$ not coming from spreads?
- Find bent functions f : 𝔽ⁿ₂ → ℤ_{2^k} which do not come from spreads for 3 ≤ k ≤ n/2.
- What is the largest k (depending on n?) for which there exists a bent function f : ℝⁿ₂ → ℤ_{2^k} not coming from spreads?
- Is there a gbent function from \mathbb{F}_2^n to \mathbb{Z}_{2^k} for k > n/2?
 - What is the largest k, for which there exists a gbent function from 𝔽ⁿ₂ to ℤ_{2^k}?

All questions make also sense for functions from \mathbb{F}_p^n to \mathbb{Z}_{p^k} .